Georgia Institute of Technology

Cavity QED with atoms and ions

Paul Griffins
Kevin Fortier
Soo Kim
Michael Gibbons

Michael Chapman School of Physics Georgia Tech

Cavity QED 1 atom + 1 photon

entanglements

atom-photon photon-photon atom-atom

Reversible, coherent 'spontaneous' emission (single photon Rabi flopping)

Cavity QED in the strong coupling regime— Rabi flopping with a single photon

Single photon Rabi frequency

$$g_0 \equiv \Omega_{Rabi}$$
 (1 photon) = $\gamma \sqrt{I(1 \text{ photon})/I_{sat}}$

I (1 photon) — intensity for 1 photon in cavity I_{sat} — saturation intensity

coherent Rabi flopping requires :
$$g_0 > \gamma \quad \text{hence} \quad I \text{ (1 photon)} > I_{sat}$$

$$g_0 > \kappa$$

Cavity QED

Coherent coupling of matter qubits (e.g. single atoms) and photonic qubits

Entanglement generation

Atom-photon

Photon-photon

Atom-atom

Quantum communication

Atoms are good material qubits

Photons travel well

CQED provides connection

Cavities make good single atom detectors

Estimating the success rate

Off-resonant Raman transition using cavity field

$$\Omega_{\it effective} = {\Omega g_0 \over 2 \Delta}$$
 effective Rabi frequency

$$\Gamma_{\it effective} = 2\Delta$$
 effective Rabi frequency
$$\Gamma_{\it effective} = \gamma \left(\frac{\Omega g_0}{4\Delta^2}\right)$$
 effective spontaneous emission rate

Coherence requires

$$\Omega_{ ext{effective}}\gg\Gamma_{ ext{effective}}$$
 and $\Omega_{ ext{effective}}\gg\kappa$

$$\Omega_{\it effective} \gg \kappa$$

or

$$\frac{g_0^2}{\kappa\gamma}\gg 1$$
 and $g_0\gg\kappa$

 $\frac{g_0^2}{cooperativity}$ is the atom parameter

Success rate:

$$S_{optimal} = 1 - 2 \frac{\sqrt{\kappa \gamma}}{g_0}$$

Performance

calculations by Li You

Conditional fidelities > 99% possible with cavity emission detection

Strong coupling

$$g_{_0}=ec{d}\cdotec{E}_{_0}\propto V^{-1/2}$$

$$g_0 = \sqrt{\frac{3c\lambda\gamma}{\pi\sqrt{2rL^3}}}$$

 γ – atomic decay rate

r - mirror radius of curvature

L – cavity length

$$g_0 > \gamma, \kappa$$

$$\kappa = \pi c / FL$$

$$F = 2\pi / \delta$$

$$C_1 = \frac{g_0^2}{\gamma \kappa} = 51$$

 $L < 1000 \mu m$ for strong transitions

Finesse, F > 100,000 required for $g > \kappa$

r > 1 cm for super-polishing

Trapped Ba+ Ion Cavity QED

Ba+ advantages:

- Convenient lasers
- High finesse cavities possible on both blue and red transition
- Strong coupling regime possible with ~1 mm cavities

Relevent Ba+ levels

"borrowed" from Michigan ion trap database

Integration challenges

- Integrating small cavities with ion trap electrodes
- Minimizing charging of mirrors and effects of mirror dielectrics

Possible micro-traps (Michigan)

$\frac{\text{CAVITY 3}}{l = 221.5 \ \mu m}$

$$R = 2.5 \, cm$$

$$\frac{\kappa}{2\pi} = 5.73 \, MHz$$

$$\frac{g_0}{2\pi} = 17.7 MHz$$

$$\Im = 58,000$$

4ppm

100ppm

1-sided Cavity

$$g_0 > (\kappa, \gamma)$$

How to get an atom in the cavity

Atomic beams

Our System

Neutral atom 87Rb work

Optical Lattice

1 ms/frame

Neutral atom 87Rb work

Optical Lattice

Improved Imaging allows us to image atoms in the cavity

Mirror Separation = $225 \mu m$

Cavity detection of atoms Dark Counts log (count) 10 no atoms in cavity 10 20 30 40 50 60 70 0 40 70 10 20 30 50 60 0 Time(ms) Time(ms) 1.5 Intracavity photon # 5.0 log (counts) atoms in cavity -60 -40 40 60 Detuning (MHz) Theoretical plot 100x10⁻³ 0 20 80 Time(ms) n=1.5

Single atoms in cavity

Improving the single atom signals

"distill" from many atoms to a single atom in cavity

 Intercavity cooling for "non-destructive" intercavity detection of atoms

Recent progress: cavity signals extended from 10 ms to > 100 ms

Start with one atom in lattice

- Single atom magneto-optic trap (MOT)
- Transfer atoms into 1-D lattice optical dipole trap
- Continuous observation of atoms in lattice

A neutral atom quantum register!

Single Atom MOT

Loading and counting individual neutral Rb atoms

Looking for single trapped atoms

Flourescence in a MOT

~10,000 atoms in a lattice P =.9W, 1.2mK frame is ~.25mm long

Imaging Atoms in Optical Lattice

FORT

 $\lambda = 1064nm$

 $w_0 = 17 \mu m$

 $U=600\mu K$

6 atoms in MOT

3 atoms transferred into lattice

Using a 6 beam MOT with balanced radiation pressure we are able to image the atoms directly in the Optical Lattice

IMAGING in FORT

Exp time=1.5s

s=.0061 per beam

Count rate=2700/s

Really new data

40 mins ago

3 atoms in a row $50\mu m$ separation

Don't look back. Something might be gaining on you. **Satchel Paige**

ARDA roadmap goals

Year 2007 goals (requires ~10 physical qubits)

- encode a single qubit into the state of a logical qubit formed from several physical qubits,
- perform repetitive error correction of the logical qubit
- transfer the state of the logical qubit into the state of another set of physical qubits with high fidelity,

Year 2012 goals (requires ~50 physical qubits)

- implement a concatenated quantum error-correcting code.
- exercise multiple logical qubits through the full range of operations required for fault tolerant QC in order to perform a simple instance of a relevant quantum algorithm

Moore's law for ion traps

Moore's law for ion traps

Moore's law for ion traps

	The DiVincenzo Criteria								
QC Approach	Quantum Computation						QC Networkability		
	#1	#2	#3	#4	#5		#6	#7	
NMR	6	8	8	&	8		6	6	
Trapped Ion	6	&	8	&	&		8	8	
Neutral Atom	6	&	8	8	8		8	8	
Cavity QED	6	&	8	8	&		8	8	
Optical	8	8	&	8	8		\otimes	&	
Solid State	6	8	8	8	8		6	6	
Superconducting	6	&	⊗	©	⊗		6	6	
Unique Qubits	This fie	This field is so diverse that it is not feasible to label the criteria with "Promise" symbols.							

Legend: e a potentially viable approach has achieved sufficient proof of principle

6 = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

<page-header> = no viable approach is known

- #1. A scalable physical system with well-characterized qubits.
- #2. The ability to initialize the state of the qubits to a simple fiducial state.
- #3. Long (relative) decoherence times, much longer than the gateoperation time.
- #4. A universal set of quantum gates.
- #5. A qubit-specific measurement capability.
- #6. The ability to interconvert stationary and flying qubits.
- #7. The ability to faithfully transmit flying qubits between specified locations.

